Glioma regression in vitro and in vivo by a suicide combined treatment.
نویسندگان
چکیده
We present here a suicide therapy against malignant gliomas based on the transfer to tumor cells of a gene encoding a beta-glucosidase, linamarase (lis), which in the presence of the innocuous substrate linamarin (lin) produces cyanide, blocking the mitochondrial respiratory chain. Dog glioma cells carrying the lis gene are thus sensitive to lin (IC(50) of 250 microg/mL at 48 hours) and cell death is accompanied by mitochondrial fission and ATP depletion. The combination of lis/lin with an otherwise nontoxic level of glucose oxidase (GO) enhances the therapeutic potential (IC(50) of 50 microg/mL at 48 hours). GO produces hydrogen peroxide, inducing oxidative damage and increasing cellular stress. We show here the antitumoral effect of the lis/lin/GO therapy in a canine glioma cell line and in a xenograft glioma model in nude mice. The synergic combination causes mitochondrial membrane depolarization and phosphatidylserine externalization and accelerates death by 48 hours. The lethal process is caspase independent; poly(ADP-ribose) polymerase 1 is not implicated; and there is no apoptosis-inducing factor translocation to the nucleus. The combined system induces autophagic cell death that can be rescued by 3-methyladenine and is characterized by the presence of double-membrane vesicles and punctate LC-3 pattern.
منابع مشابه
In-vitro – In-vivo Characterization of Glimepiride Lipid Nanoparticulates Prepared by Combined Approach of Precipitation and Complexation
Novel lipid nanoparticulates (NCs) were developed by a combined approach of precipitation and complexation with an aim to improve the solubility, stability and targeting efficiency of glimepiride (GLP). GLP NCs were prepared by precipitation process using PEG 20000 and further complexed with phospholipon90G (P90G). The NCs were evaluated for physicochemical characterization, such as drug lo...
متن کاملIn Vitro Radiosensitizing Effects of Temozolomide on U87MG Cell Lines of Human Glioblastoma Multiforme
Background: Glioma is the most common primary brain tumor with poor prognosis. Temozolomide (TMZ) has been used with irradiation (IR) to treat gliomas. The aim of the present study was to evaluate the cytotoxic and radiosensitizing effect of TMZ when combined with high-dose and high-dose rate of gamma irradiation in vitro.Methods: Two ‘U87MG’ cell lines and skin fibroblast were cultured and ass...
متن کاملO24: Functional Role of the K2P Potassium Channel TASK-3 in Glioma
TASK-3, a two-pore-domain (K2P) potassium channel, has been implicated as important regulator for the effector function and proliferation of T-cells. Interestingly, TASK-3 has also a functional impact on tumor cells. Therefore, we sought to investigate whether TASK3 modulation might have a therapeutic potential for malignant gliomas by a variety of phenotypical and functional in vitro assays mi...
متن کاملEvaluation of γ-irradiation treatment on the antibacterial activities of Mentha piperita L. essential oils in vitro and in vivo systems (CLP inflammatory model)
Background: Mentha piperita L. essential oils have different antibacterial activity. In the present study, we investigated the effect of &gamma–irradiation on the antibacterial activities of Mentha piperita L. essential oils in vitro and in vivo systems. Materials and Methods: The aerial parts of peppermint were irradiated in a cobalt60 source with 0, 10 and 25 kGy absorbed doses. Then, t...
متن کاملThe antileishmanial activity of Aloe vera leaf exudates: in vitro and in vivo
Background: According to the drug resistance and side effects of the standard treatments for leishmaniasis, achieving effective treatment with less side effects and more benefits is of paramount importance. The present study aimed to evaluate the effect of Aloe vera leaf exudate on Leishmania major under in vitro and in vivo models, in inbred BALB/c mice. Methods: Different concentrations of bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer research : MCR
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2008